Section I – Parent Graphs

Graph each function and clearly indicate units on the axes provided.

2.
$$f(x) = x^2$$

3.
$$f(x) = x^3$$
 4. $f(x) = |x|$

4.
$$f(x) = |x|$$

5.
$$f(x) = \sin x$$

6.
$$f(x) = \cos x$$

5.
$$f(x) = \sin x$$
 6. $f(x) = \cos x$ 7. $f(x) = \tan x$ 8. $f(x) = \sec x$

8.
$$f(x) = \sec x$$

$$9. \quad f(x) = 2^x$$

$$10. \quad f(x) = \log_2 x$$

11.
$$f(x) = \frac{1}{x}$$
 12. $f(x) = \frac{1}{x^2}$

12.
$$f(x) = \frac{1}{x^2}$$

$$13. \quad f(x) = \sqrt{x}$$

14.
$$f(x) = \sqrt{a^2 - x^2}$$
, where a is a constant.

Section II – Reflections across y = x.

Reflect the given functions across the line y = x. Indicate which of the reflections are functions.

$$16. \quad f(x) = |x|$$

$$17. \quad f(x) = \sin x$$

18.
$$f(x) = 2^x$$

17.
$$f(x) = \sin x$$
 18. $f(x) = 2^x$ 19. $f(x) = \sqrt{x}$

20. Is there a characteristic of a function that assures that its reflection across the line y = x is a function?

Section III – Graphical Transformations

Graph each function (by hand) using transformations from the parent graph.

21 a.
$$f(x) = 2x + 1$$
 b. $g(x) = f(-x)$ 22 a. $f(x) = \sqrt{x}$ b. $g(x) = -f(x)$

b.
$$g(x) = f(-x)$$

22 a.
$$f(x) = \sqrt{x}$$

b.
$$g(x) = -f(x)$$

23 a.
$$f(x) = 2^x$$

$$b. \quad g(x) = f(x) + 1$$

24 a.
$$f(x) = x^2$$

b.
$$g(x) = f(x-2)$$

Generalize what is happening geometrically when using the function f(x) to obtain the graph of

a) f(-x)

b) -f(x)_____

c) f(x)+c

$$25 a. \quad f(x) = \sin x$$

b.
$$g(x) = 2f(x)$$

c.
$$h(x) = f(2x)$$

26 a.
$$f(x) = |x|$$

b.
$$g(x) = \frac{1}{3}f(x)$$

c.
$$h(x) = f\left(\frac{x}{3}\right)$$

Generalize what geometric transformation takes place when using f(x) to obtain the graph of

a)
$$c \cdot f(x)$$

b)
$$f(cx)$$

Use the generalizations to sketch the graphs of the following functions.

$$27. \quad f(x) = -\sec x$$

28.
$$f(x) = (x+1)^3$$

29.
$$f(x) = 1 + \frac{1}{x^2}$$

30.
$$f(x) = \tan\left(x - \frac{\pi}{4}\right)$$
 31. $f(x) = \frac{-2}{x - 3}$

31.
$$f(x) = \frac{-2}{x-3}$$

32.
$$f(x) = \log_2(1-x)$$

Given the graph of f(x) as shown below over the domain $-3 \le x \le 3$, graph the following transformations and indicate units on the axes.

$$33. \quad f_1(x) = f(-x)$$

34.
$$f_2(x) = -f(x)$$

35.
$$f_3(x) = f(x) - 1$$

36.
$$f_4(x) = f(x-1)$$

$$37. \quad f_5(x) = f(2x)$$

38.
$$f_6(x) = 1 - f(x)$$

39.
$$f_7(x) = f(2-x)$$

$$40. \quad f_8(x) = \frac{1}{2} f\left(\frac{x}{2}\right)$$

Section IV- Graphical Interpretation of Absolute Value

The inclusion of absolute value in the description of a function can bring about dramatic changes. Note the following examples.

$$f(|x|) = |x|$$

$$|f(x)| = |x|$$

B.
$$f(x) = x^3 - x^2$$

$$f(|x|) = (|x|)^3 - (|x|)^2$$

$$\left| f(x) \right| = \left| x^3 - x^2 \right|$$

Sketch each f(x) and subsequent transformations affected by absolute value. In addition, write the formula for each function.

41 a.
$$f(x) = x^2 + x$$

b.
$$f(|x|) =$$

c.
$$|f(x)| =$$

$$42 a. \quad f(x) = \sin x$$

b.
$$f(|x|) =$$

b.
$$f(|x|) =$$
______ c. $|f(x)| =$ _____

b.
$$f(|x|) =$$

44 a.
$$f(x) = \ln x$$

44 a.
$$f(x) = \ln x$$
 b. $f(|x|) =$ _____ c. $|f(x)| =$ _____

Describe the geometric transformation on f(x) involved in graphing, as well as how to graph it.

a) f(|x|)

b) |f(x)|

45. Graph $f(x) = \left| \ln(|x|) \right|$

