Curve Fitting: Modeling with Quadratic Functions

Goal 1: Write quadratic functions given characteristics of their graphs.

Goal 2: Use technology to find quadratic models for data.

Prior Knowledge: Solving a system of equations using Elimination or Substitution, or with Inverse Matrices methods.

Warm-up:

Solve the system of equations using Elimination or Substitution. $\begin{cases} 2x - y \\ x + y + y \end{cases}$

$$\begin{cases} 2x - y + z = 2 \\ x + y + z = 3 \\ -3x - 2y + z = -4 \end{cases}$$

Example 1 Writing a Quadratic Function in Vertex Form

Write a quadratic function for the parabola shown below.

$$y = a(x-h)^2 + k$$

Example 2 Writing a Quadratic Function in Intercept Form

Write a quadratic function for the parabola shown at the right.

$$y = a(x-p)(x-q)$$

Example 3 Writing a Quadratic Function in Standard Form

Write a quadratic function that fits the points (0,5), (2,1), and (3,2).

(x, y)	$ax^2 + bx + c = y$	System of Equations
(0,5)		
(2,1)		
(3,2)		

Solve the system using Elimination or Substitution methods.

Example 4 Writing a Quadratic Function in Standard Form

Write a quadratic function that fits the points (-2,-5), (1,1), and (3,-15).

(x, y)	$ax^2 + bx + c = y$	System of Equations		
(-2, -5)				
(1,1)				
(3,-15)				

Solve the system using Elimination or Substitution methods.

Example 5 Finding a Quadratic Model for a Data Set

A study compared the speed x (in miles per hour) and the average fuel economy y (in miles per gallon) for cars. The results are shown in the table.

(Source: *Transportation Energy Data Book*)

Speed, x	15	20	25	30	35	40
Fuel Economy, y	22.3	25.5	27.5	29.0	28.8	30.0
Speed, x	45	50	55	60	65	70
Fuel Economy, y	29.9	30.2	30.4	28.8	27.4	25.3

- a) Use a graphing calculator to find the best-fitting quadratic model for the data.
 - 1 $\{x_1, x_2, ...\} \rightarrow L_1; \{y_1, y_2, ...\} \rightarrow L_2$ Enter the data into two lists on the graphing calculator.
 - 2 **2nd Y=** → **STATPLOT ON**Set-up the type of graph to display. Then hit **ZOOM 9**.
 - 3 **STAT** → **CALC** → **5: QuadReg**Use the quadratic regression feature to find the best-fitting model for the data. Write the a, b, and c values with three significant digits in the answer.
- b) Find the speed that maximizes a car's fuel economy.
 - 1 Use the $-\frac{b}{2a}$ rule, and do it algebraically.

<OR>

2 Graph your equation in the **Y**= and go to **2**nd **TRACE** → **4:maximum** to use the MAXIMUM feature on the graphing calculator.