Curve Fitting: Modeling with Quadratic Functions

Goal 1: Write quadratic functions given characteristics of their graphs.
Goal 2: Use technology to find quadratic models for data.
Prior Knowledge: Solving a system of equations using Elimination or Substitution, or with Inverse Matrices methods.

Warm-up:

Solve the system of equations using Elimination or Substitution. $\left\{\begin{array}{l}2 x-y+z=2 \\ x+y+z=3 \\ -3 x-2 y+z=-4\end{array}\right.$

Example 1 Writing a Quadratic Function in Vertex Form Write a quadratic function for the parabola shown below.

$$
y=a(x-h)^{2}+k
$$

Example 2 Writing a Quadratic Function in Intercept Form
Write a quadratic function for the parabola shown at the right.

$$
y=a(x-p)(x-q)
$$

Example 3 Writing a Quadratic Function in Standard Form

Write a quadratic function that fits the points $(0,5),(2,1)$, and $(3,2)$.

(x, y)	$a x^{2}+b x+c=y$	System of Equations
$(0,5)$		
$(2,1)$		
$(3,2)$		

Solve the system using Elimination or Substitution methods.

Example 4 Writing a Quadratic Function in Standard Form

Write a quadratic function that fits the points $(-2,-5),(1,1)$, and $(3,-15)$.

(x, y)	$a x^{2}+b x+c=y$	System of Equations
$(-2,-5)$		
$(1,1)$		
$(3,-15)$		

Solve the system using Elimination or Substitution methods.

Example 5 Finding a Quadratic Model for a Data Set

A study compared the speed x (in miles per hour) and the average fuel economy y (in miles per gallon) for cars. The results are shown in the table.
(Source: Transportation Energy Data Book)

Speed, x	15	20	25	30	35	40
Fuel Economy, y	22.3	25.5	27.5	29.0	28.8	30.0

Speed, x	45	50	55	60	65	70
Fuel Economy, y	29.9	30.2	30.4	28.8	27.4	25.3

a) Use a graphing calculator to find the best-fitting quadratic model for the data.
$1\left\{x_{1}, x_{2}, \ldots\right\} \rightarrow L_{1} ;\left\{y_{1}, y_{2}, \ldots\right\} \rightarrow L_{2}$ Enter the data into two lists on the graphing calculator.

$2 \mathbf{2}^{\text {nd }} \mathbf{Y}=\rightarrow$ STATPLOT ON

Set-up the type of graph to display. Then hit ZOOM 9.

3 STAT \rightarrow CALC \rightarrow 5: QuadReg

Use the quadratic regression feature to find the best-fitting model for the data. Write the a, b, and c values with three significant digits in the answer.
b) Find the speed that maximizes a car's fuel economy.

1 Use the $-\frac{b}{2 a}$ rule, and do it algebraically.
<OR>

2 Graph your equation in the $\mathbf{Y}=$ and go to $\mathbf{2}^{\text {nd }}$ TRACE \rightarrow 4:maximum to use the MAXIMUM feature on the graphing calculator.

